Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori.

نویسندگان

  • E D Segal
  • J Cha
  • J Lo
  • S Falkow
  • L S Tompkins
چکیده

Helicobacter pylori, present in half of the world's population, is a very successful pathogen. It can survive for decades in the human stomach with few obvious consequences to the host. However, it is also the cause of gastric diseases ranging from gastritis to ulcers to gastric cancer and has been classified a type 1 carcinogen by the World Health Organization. We have previously shown that phosphorylation of a 145-kDa protein and activation of signal transduction pathways are associated with the attachment of H. pylori to gastric cells. Here we identify the 145-kDa protein as the H. pylori CagA protein. We also show that CagA is necessary to induce a growth-factor-like phenotype (hummingbird) in host gastric cells similar to that induced by hepatocyte growth factor (HGF). Additionally, we identify a second cellular phenotype induced after attachment by H. pylori, which we call SFA (stress fiber associated). SFA is CagA independent and is produced by type I and type II H. pylori.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between Helicobacter pylori cagA, babA2 Virulence Factors and Gastric Mucosal Interleukin-33 mRNA Expression and Clinical Outcomes in Dyspeptic Patients

Helicobacter pylori (H. pylori) infection has been reported in more than half of the world human population. It is associated with gastric inflammation and noticeable infiltration of the immune cells to the stomach mucosa by several cytokines secretion. IL-1&beta, IL-18 have been shown to contribute to H. pylori induced gastritis, but the details of inflammation and association of virulence fac...

متن کامل

Helicobacter pylori Caga Protein Can Be Tyrosine Phosphorylated in Gastric Epithelial Cells

Attachment of Helicobacter pylori to gastric epithelial cells induces various cellular responses, including the tyrosine phosphorylation of an unknown 145-kD protein and interleukin 8 production. Here we show that this 145-kD protein is the cagA product of H. pylori, an immunodominant, cytotoxin-associated antigen. Epithelial cells infected with various H. pylori clinical isolates resulted in g...

متن کامل

A Specific A/T Polymorphism in Western Tyrosine Phosphorylation B-Motifs Regulates Helicobacter pylori CagA Epithelial Cell Interactions

Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as...

متن کامل

Analysis of translocation of the CagA protein and induction of a scattering phenotype in AGS cells infected with Helicobacter pylori.

OBJECTIVE To investigate whether the presence of structured CagA proteins in Western- and Eastern-type Helicobacter pylori (H. pylori) induces different incidences of gastric diseases. METHODS CagA and phosphorylated CagA were expressed in AGS gastric epithelial cells infected with wild type and mutant strains. The ability of individual CagA was determined by immunoprecipitation and Western b...

متن کامل

Role of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer

Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 25  شماره 

صفحات  -

تاریخ انتشار 1999